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Abstract 

Artificial intelligence (AI) and machine learning (ML) have revolutionized Alzheimer's disease 

(AD) research, driving advancements in both diagnosis and drug discovery. AI-based models, 

such as convolutional neural networks (CNNs) and support vector regression (SVR), have 

demonstrated high precision in differentiating between AD, mild cognitive impairment (MCI), 

and healthy individuals through neuroimaging techniques like MRI and PET. These 

technologies have enhanced the detection of early AD biomarkers, aiding in more accurate 

diagnosis.  In drug discovery, AI-driven methods like machine learning and deep learning are 

transforming key processes such as virtual screening, de novo drug design, and 

pharmacokinetic/pharmacodynamic (PK/PD) modeling. AI plays a crucial role in predicting 

drug properties related to absorption, distribution, metabolism, excretion, and toxicity 

(ADMET), particularly in evaluating blood-brain barrier (BBB) penetration. Models like 

support vector machines (SVM) and light gradient boosting machine (LightGBM) have 

achieved high accuracy in predicting BBB permeability, accelerating the development of 

therapeutic candidates.  Furthermore, AI integration in multiomic data analysis, utilizing public 

datasets like ADNI and NIAGADS, has enabled the identification of key genes and pathways 

involved in AD, which serve as potential drug targets. Advanced machine learning techniques, 

including logistic ridge regression, random forest, and support vector machines, have identified 

critical pathways like mitochondrial dysfunction and NF-kappa B signaling in AD 

pathogenesis.  Overall, AI has been pivotal in AD research, improving early diagnosis and 

expediting drug discovery, offering promising avenues for future treatments and precision 

medicine. 

 

Keywords: artificial intelligence, Alzheimer's disease, drug discovery, multi-omics analyses, 

machine learning 
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Graphic Abstract of the Review on AI roles in Alzheimer’s Disease Treatments 

 

1. Introduction 

Dementia is a severe decline in cognitive abilities that significantly affects a person's daily 

activities. Alzheimer's disease (AD) is the leading cause of the aging-related cognition decline, 

accounting for 60-80% of all the dementia.  AD typically occurs after the age of 65, at which 

point it is known as late-onset AD (LOAD). In contrast, early-onset AD (EOAD), which occurs 

before the age of 65, is a rare AD form affecting about 5% of the AD patients. EOAD often 

presents with atypical symptoms, leading to delayed diagnosis and more aggressive disease 

progression. AD is a neurodegenerative disorder characterized by a gradual onset and 

progressive decline in behavioral and cognitive functions, including memory, comprehension, 

language, attention, reasoning, and judgment. Although AD itself is not a direct cause of death, 

it significantly increases susceptibility to other fatal complications. Currently, nearly 44 million 

people worldwide suffer from AD, and there is no cure and limited treatment available. Existing 
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drugs can only slow the progression of memory and cognitive decline, highlighting the urgent 

need for new therapies to reverse cognitive impairment.[1], [2], [3] 

 

2. Pathology of AD 

AD is known for the harmful build-up of amyloid plaques outside brain cells and tangled tau 

proteins inside them. These abnormalities are key to understanding the disease and are a major 

focus of research. In 1984, George G. Glenner and Caine W. Wong discovered that the main 

substance in these plaques is amyloid β protein (Aβ)[4], [5], [6]. Aβ is formed when a larger 

protein called amyloid precursor protein (APP) is cut into smaller pieces by two enzymes, β-

secretase (BACE1) and γ-secretase. This process is a part of what is known as the 

amyloidogenic pathway, which leads to the production of Aβ peptides, particularly Aβ38, Aβ40, 

and Aβ42. However, when APP is first cleaved by another enzyme, α-secretase, Aβ does not 

form, which is a part of the non-amyloidogenic pathway. In this pathway, APP is cleaved at a 

specific site, producing a fragment incompatible with the Aβ production.[7] [8], [9], [10] 

Maintaining a balance between Aβ production and clearance is critical to prevent toxic 

accumulation of aggregated Aβ species. Aβ is cleared from the brain by several methods, 

including degradation by enzymes, crossing the blood-brain barrier (BBB), movement through 

the interstitial fluid (ISF), and absorption into the cerebrospinal fluid (CSF)[11]. The BBB, 

made up of tightly packed endothelial cells, controls what enters and leaves the brain. Aβ moves 

from the brain into the blood via specific transporters, such as low-density lipoprotein receptor-

related protein 1 (LRP-1) and ABC transporters (ABCA1 and ABCB1). Conversely, receptors 

for advanced glycosylation end products (RAGE) help Aβ get into the brain. In AD, the 

transporters that remove Aβ from the brain are less active, while those that bring Aβ into the 

brain are more active, upsetting the balance[10], [11], [12]. Clearance of Aβ by the perivascular 

drainage system is critical. Failure of this system can lead to problems with synaptic function 

and cognitive ability, contributing to AD. The clearance of Aβ via CSF depends on the 

production of CSF, the integrity of the blood-CSF barrier, relevant transporters, and lymphatic 

absorption. In AD, the blood-CSF barrier is damaged, impairing Aβ clearance[10], [13], [14], 

[15] (Supplementary Figure 1). 

Several enzymes are involved in the degradation of Aβ, including zinc metalloendopeptidases, 

insulin-degrading enzyme (IDE), matrix metalloproteinases (MMPs), angiotensin-converting 

enzyme (ACE), endothelin-converting enzyme (ECE), serine proteases, cysteine proteases, and 
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kallikrein-related peptidase 7. In patients with AD, the activity of some of these enzymes, such 

as IDE, ACE, and neprilysin (NEP), is reduced in the hippocampus. Animal models also show 

impaired Aβ degradation. GWAS studies have identified risk factors for AD, such as RIN3, 

CLU, and PTK2B, that are associated with these degradation pathways[10], [12], [16]. 

The "amyloid hypothesis" proposes that Aβ production triggers a series of harmful events 

leading to AD. This includes inflammation, oxidation, excessive glutamate activity 

(excitotoxicity), and tau protein hyperphosphorylation. Normally, tau protein helps stabilizing 

the neuron structure, but when it becomes hyperphosphorylated, it forms insoluble tangles, 

disrupting neuron function and transport. This contributes to neurodegeneration. Initially, tau 

hyperphosphorylation was thought to be a consequence of Aβ deposition, but now it is believed 

that Aβ and tau may act independently yet synergistically, each worsening the other's toxic 

effects. As AD progresses, it destroys neurons, leading to imbalances in neurotransmitters like 

acetylcholine, dopamine, and serotonin, which results in the cognitive deficits typical of the 

disease.[10], [11], [12], [17] 

Understanding AD involves exploring various theories, one of which is the mitochondrial 

dysfunction hypothesis. This theory suggests that mitochondrial dysfunction in an AD brain 

leads to amyloidosis, cell cycle reentry, and tau phosphorylation. In addition, there is strong 

evidence that both the cholinergic and glutamatergic neurochemical systems play a significant 

role in AD. The cholinergic system, essential for memory and learning, is compromised early 

in AD due to the loss of neurons or their ability to produce acetylcholine (ACh). This leads to 

a decrease in ACh levels and function, which are critical for cognitive processes. Alongside 

this cholinergic deficit, there are other presynaptic issues, such as the loss of cholinergic neural 

networks and reduced acetylcholinesterase activity. The cholinergic theory of AD emphasizes 

that these impairments are major contributors to the cognitive decline observed in patients. The 

glutamatergic system, primarily involving N-methyl-d-aspartate (NMDA) receptors, also plays 

a critical role in memory and learning. Glutamate, an excitatory neurotransmitter, interacts with 

NMDA receptors to support these cognitive functions. However, excessive activation of 

NMDA receptors by glutamate can cause excitotoxicity, leading to neuronal damage and 

contributing to the neurodegenerative processes seen in AD. Glutamatergic neurons are the 

most numerous in the central nervous system (CNS), and their loss contributes significantly to 

the brain shrinkage characteristic of AD.[12], [18], [19], [20], [21] 
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3. Comorbidities of AD 

AD is closely associated with various cardiovascular risk factors. Midlife hypertension has 

been found to significantly increase the risk of late-life dementia, including AD, as shown in 

the cohort study. This relationship is potentially due to long-standing hypertension leading to 

endothelial dysfunction, arterial stiffness, and atherosclerosis, which collectively contribute to 

cerebral hypoperfusion. Additionally, hyperlipidemia has been strongly linked to AD, with 

studies indicating that high midlife cholesterol levels and imbalances in HDL and LDL levels 

exacerbate the risk. The APOE4 allele, which is linked to AD susceptibility, often corresponds 

with elevated cholesterol levels, influencing the activity of brain secretase enzymes and 

increasing Aβ production. The use of statins has been observed to reduce AD occurrence, 

although the exact mechanisms remain unclear[22], [23]. 

Type 2 diabetes mellitus (DM2) and prediabetic conditions also elevate the risk for dementia, 

including vascular dementia and AD. DM2 is known to cause cerebral microvascular damage 

and contribute to endothelial dysfunction and atherosclerosis. Hyperinsulinemia, typical in 

DM2, may interfere with the insulin-degrading enzyme (IDE), which is responsible for 

degrading both insulin and Aβ. Consequently, higher insulin levels can lead to increased Aβ 

accumulation. Other lifestyle-related risk factors such as smoking, obesity, and sedentary 

behavior are similarly associated with the development of both cardiovascular disease (CVD) 

and AD. Gender differences also play a role, with women showing a higher susceptibility to 

AD when they have cardiovascular risk factors compared to men[23], [24], [25]. 

In addition to cardiovascular and metabolic disorders, other health conditions have been 

implicated in increasing AD risk. Depression and anxiety, while risk factors for dementia, 

might also be early symptoms of the disease. Hearing loss has been identified as a potential 

risk factor, though a direct causal link remains to be confirmed. Emerging research has also 

highlighted the significance of conditions like constipation, spondylosis, and abnormal weight 

loss as potential predictors of AD. Specifically, cervical spondylosis might affect blood flow or 

cerebrospinal fluid dynamics, accelerating neurodegeneration. Furthermore, sleep disorders, 

hypothyroidism, and certain cancers have shown associations with AD, suggesting a complex 

interplay of genetic and environmental factors in the disease's progression[23]  

Moreover, recent studies have explored the connection between COVID-19 and AD, revealing 

significant neurological implications. Although SARS-CoV-2 primarily affects the respiratory 

system, over 30% of hospitalized COVID-19 patients exhibit neurological symptoms. Severe 
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COVID-19 cases in elderly individuals often involve a cytokine storm, leading to excessive 

inflammation and immune responses that may accelerate brain inflammatory 

neurodegeneration. Both AD and COVID-19 share common risk factors and pathogenetic 

mechanisms, potentially explaining the higher incidence and mortality rates among AD patients 

infected with COVID-19. Additionally, the isolation and quarantine measures to prevent 

COVID-19 spread can negatively impact AD patients, increasing cognitive decline due to 

reduced social interaction.[26], [27], [28], [29] 

 

4. Pharmacotherapeutic approaches in AD 

While AD remains incurable, certain treatments can help slow the progression of clinical 

decline and improve cognitive function and daily living skills. In addition, other treatments 

may provide temporary relief from symptoms such as memory loss and confusion. Over the 

past few decades, significant efforts have been made to develop disease-modifying treatments 

(DMTs) for AD, focusing on the underlying mechanisms that cause neuronal damage and 

progressive dementia. The U.S. Food and Drug Administration (FDA) has approved 

medications in two main categories: those that may slow the clinical worsening of AD and 

those that provide short-term symptom relief[13], [30].[31] 

 

4.1. Anti-Aβ drugs 

A prominent target for these treatments is the aggregation of beta-amyloid (Aβ) peptides in the 

brain. However, few anti-Aβ drugs have demonstrated significant cognitive benefits in clinical 

trials. Currently, several anti-Aβ agents, including aducanumab, lecanemab, gantenerumab, 

donanemab, and BACE inhibitors, are under investigation. The FDA has approved two anti-

Aβ mAbs, aducanumab and lecanemab, representing a significant step forward[32], [33], [34], 

[35], [36]. 

In 2021, the FDA granted conditional accelerated approval to Biogen's aducanumab, an 

antibody designed to reduce amyloid burden. However, phase 3 trials yielded inconsistent 

results, and the drug was criticized for its high cost and potentially serious side effects, leading 

to limited use in the U.S. In addition, the European Medicines Agency (EMA) did not approve 

aducanumab due to inconsistent efficacy and safety concerns[32], [34], [35]. 
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Another amyloid-targeting antibody, lecanemab, is designed to reduce brain amyloid burden 

by targeting protofibrils, an intermediate step in amyloid plaque formation. Lecanemab 

received accelerated approval from the FDA in January 2023 after promising results in Phase 

2 trials. Recent Phase 3 studies showed significant effects on clinical outcomes, including a 

27% reduction in progression on the Clinical Dementia Rating-Sum of Boxes (CDR-SB). 

Despite these positive results, lecanemab also showed some side effects, such as infusion-

related reactions and amyloid-related imaging abnormalities with edema or effusion (ARIA-

E). A supplemental Biologics License Application for traditional approval has been submitted 

to the FDA and approval by the EMA is expected based on the results of the Phase 3 trial[32], 

[37], [38], [39]. 

 

4.2. Acetylcholinesterase Inhibitors 

Acetylcholinesterase, commonly known as AChE, is a key enzyme in the body's cholinergic 

nervous system, which includes both the peripheral and central nervous systems. AChE breaks 

down acetylcholine (ACh) into choline and acetate ions through a process called hydrolysis. 

The active site of AChE is a large, hydrophobic cavity divided into two parts: the esteratic 

subsite (ES) and the anionic substrate binding site (AS). In the central nervous system, 

acetylcholine is an important neurotransmitter. It binds to the AS with its positively charged 

quaternary amine, allowing this site to interact with other similar substrates and inhibitors. The 

FDA has approved four acetylcholinesterase inhibitors (AChEIs) for the treatment of AD: 

donepezil and rivastigmine for mild to severe AD, galantamine for mild to moderate AD, and 

tacrine for mild to moderate AD (Figure 1). In people with AD, the enzyme acetylcholinesterase 

becomes more active, breaking down acetylcholine—a key neurotransmitter for memory and 

learning—faster than usual, leading to lower levels in the brain. This enzyme also plays a role 

in the formation of the amyloid plaques and neurofibrillary tangles that are hallmarks of AD. 

By inhibiting acetylcholinesterase, these drugs increase acetylcholine levels in the brain, 

helping to alleviate symptoms in those with mild to moderate AD. Most patients tolerate these 

drugs well[12], [19], [40], [41]. 
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Figure 1. Structural representations of donepezil, galantamine, rivastigmine, and tacrine with 

acetylcholinesterase. The key amino acid residues involved in binding for each inhibitor 

include: Donepezil: Interacts with residues TYR-70, TRP-279, GLY-118, PHE-330, PHE-

331, and HIS-440, contributing to its inhibitory effect. Rivastigmine: Forms key interactions 

with ASP-70, GLN-119, TRP-82, TYR-332, ASN-68, and THR-120. Galantamine: Engages 

with GLY-117, GLY-118, GLU-199, ASP-72, PHE-288, PHE-300, PHE-331, HIS-440, TRP-

84, and TYR-121. Tacrine: Binds to residues GLY-117, GLY-118, GLU-199, ASP-72, PHE-

330, HIS-440, TRP-84, TRP-432, TYR-442, and TYR-432. 
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Common side effects of these drugs are gastrointestinal issues, such as diarrhea, nausea, and 

vomiting. Donepezil and galantamine are mainly processed by the liver, while rivastigmine is 

metabolized by both the liver and intestines. Donepezil and galantamine specifically and 

reversibly inhibit acetylcholinesterase, whereas rivastigmine acts as a "pseudo-irreversible" 

inhibitor of both acetylcholinesterase and butyrylcholinesterase. This means rivastigmine 

forms a stable complex with the enzyme, preventing it from breaking down acetylcholine. 

Tacrine is quite effective at inhibiting both AChE and butyrylcholinesterase (BChE) enzymes. 

However, its use is restricted because of numerous side effects such as nausea, vomiting, loss 

of appetite, diarrhea, and clumsiness. Moreover, patients on tacrine need regular blood tests 

because it can cause liver damage. To maintain its therapeutic effects, multiple doses are 

necessary due to tacrine's short half-life and the risk of severe side effects at higher doses. 

Because of these issues, particularly its liver toxicity, tacrine was eventually discontinued. 

Galantamine has a half-life of 6 to 8 hours, while donepezil's half-life is much longer at 70 

hours. Rivastigmine, despite its shorter half-life, has prolonged effects[12], [18], [40]. 

 

4.3. Glutamate Inhibitor 

Excitotoxicity is a condition where excessive glutamate activity causes neuronal damage by 

increasing calcium levels in neurons. Memantine, a non-competitive NMDA receptor 

antagonist (Figure 2), helps to counteract the harmful effects of high glutamate levels in the 

brain. This characteristic has made memantine an effective treatment for individuals with AD. 

Approved for moderate to severe AD, memantine has been shown to improve cognitive 

function and outcomes in patients. Generally, patients tolerate memantine well, though it can 

cause minor and temporary side effects and may interact with other medications.  Memantine 

can be used in combination with AChEIs because their mechanisms are complementary. This 

combination therapy often benefits patients by producing better results without increasing side 

effects. For people with moderate to severe dementia, using memantine alone or in combination 

with AChEIs at higher doses may lead to better overall functioning and therapeutic outcomes. 

However, combining memantine with other NMDA receptor antagonists, such as amantadine, 

budipine, ketamine, and dextromethorphan, may result in pharmacotoxic psychosis. Common 

side effects seen in clinical trials include dizziness, agitation, hallucinations, headache, and 

fatigue, while less common symptoms include anxiety, vomiting, urinary tract infection, and 

increased sweating[18], [42], [43], [44], [45]. 
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Figure 2. Structural representations of Memantine bound to the NMDA receptor. The key 

amino acid residues involved in binding for each inhibitor include: VAL-644, ALA-644, 

THR-647, THR-648, LEU-643 and ASN-615. 
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Table 1. Overview of patient demographics, dosing, and treatment duration in FDA-approved AD drug trials 

 

Medicine 

name 

 

Patients 

Group 

 

Placebo 

Group 

 

Age 

 

Dose 

 

Duration 

 

Done % 

 

 
Refrences 

 

 

 

 

 

 

 

Rivastigmine 

 

Man 

 

Female 

 

Man 

 

Female 

 

medicine 

 

placebo 

 

3-6 

mg 

 

6-12 

mg 

 

 

52 week 

 

medicine 

 

placebo 

 

[46] 

 

11 

 

13 

 

9 

 

11 

 

74.11

±0.87 

 

73.4± 

0.9 

 

3 

 

21 

 

87.5 

 

100 

80 107 - - 75 - 2-12 mg 26 week 80 - [47] 

 

345 

 

187 

 

74.3 

1-4 

mg 

6-12 

mg 

 

26 week 

 

80-81 

 

 

75 

[48] 

192 153 

 

464 

 

235 

 

73.4 

1-4 

mg 

6-12 

mg 

26 week  

65 

 

85 

 

84 

[49] 

 

243 

 

243 

 

239 

 

50-85 

1-4 

mg 

6-12 

mg 

 

 

26 week 

 

86 

 

67.48 

 

87 

[50] 

243 243 
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Table 2. Summary of Experimental Results for FDA-Approved AD Drugs Across Cognitive and Behavioral Assessment Scales 

 

Memantine 

 

35 

 

91 

 

47 

 

79 

 

76 

 

20 mg 

 

28 week 

 

72 

[51] 

112 206 61 91 74.0 ± 

7.4 

73.3 ± 

6.9 

20 mg 24 week 85 91 [52] 

 

Galantamine 

 

287 

 

- 

 

70.2±9.6 

16

mg 

24 mg  

156 week 

 

27.9 

[53] 

115 172 

118 208 115 205 76.5 (7.77) 16 – 24 mg 6 month 79 [54] 

 

Donepezil 

35 40 39 65 73.2

±7.39 

75.1

±7.75 

10 mg 24 week 80 85.5 [55] 

702

3 

13451 - - 82.2±6.3 - 3 – 10 mg 77 week 58.3 - [56] 

107 

118 

164 

155 

123 151 71±0.5 72±0.5 5 

mg 

10 mg 30 week 88 84 80 [57] 

 

Aducanumab 

784 863 - 70.1±7.45 3-10 mg/kg 18 month 85.7 91.6 86.9 [58] 

65 60 17 23 72.6 ± 

8.1 

72.8 ± 

7.2 

1 – 10 mg/kg 54 week - [59] 

12 27 5 9 67.7 66.9 0.3 – 60 

mg/kg 

24 week 92.3 [60] 
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Medicine name Refrences ADAS-cog 
CIBIC-

plus 
MMSE PDS ADCD/ADL NPI 

 

 

 

 

Rivastigmine 

[61] 
 

0.82±0.71 

 

0.16±0.14 

 

0.2±0.1 

 

-1.14±1.1 

 

–0.33±0.2 
- 

[50] 1.17- -1.24 3.93 – 4.2 - 1.3- -2.9 - - 

[47] 
 

20.8 

 

- 

 

20.2 

 

56.2 

 

- 

 

- 

[48] 
–

2.3±0.62 

–

3.4±0.54 
- - - - - 

[49] -3 -3.8 - - - - - 

 

 

Memantine 

[51] 
 

- 

 

4.5±1.12 

 - 

0.5±2.40 

 

- 

 - 

3.1±6.79 

 

0.5±15.76 

[52] 25.9 ± 10.4 4.12 
18.6 ± 

3.3 
- −1.99 −1.45 

 

 

Galantamine 

 

 

[53] 22.3 ± 7.9 - - - - - 

[54] - - 
17.80 

(4.14) 
- –1.0 (1.12) –1.2 (0.83) 

 

Donepezil 
[55] −3.56 3.68 1.29 - 2.142 - 

 

 

Aducanumab 

[58] -0.588 - -0.583 - -0.1 – 0.2 -- 0.7 - 

[59] - - 
24.2 ± 

3.5 
- - - 

[60] 20.7  - 21.3  -  -  - 
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Table 3. Adverse events reported in clinical trials of FDA-approved drugs for AD 

Description  : All data is expressed in percentage terms 

 

Medicine name Refrences  
Adverse 

events 
Anorexia 

Abdominal 

pain 
Diarrhea Dizziness Headache 

Urinary 

tract 

infection 

Vomiting Nausea Death 

Rivastigmine 

[61] 
 

- 

 

8.3 

 

4.1 

 

- 

 

8.3 

 

8.3 

 

- 

 

12.5 

 

16.6 

 

- 

[50] 
 

7.4 – 22.6 

 

3 - 14 

 

5 - 12 

 

10 - 17 

 

10 - 20 

 

7 - 19 

 

- 

 

8 - 34 

 

17 - 50 

 

≤ 1 

[49] 8-29 - - - - - - - - ≤ 1 

Memantine 
[51] 

 

84 

 

- 

 

18 

 

10 

 

- 

 

- 

 

6 

 

- 

 

- 

 

- 

[52] 8.8 - - - 5.3 5.7 - - - - 

Galantamine 

 

 

[53] 
 

72 

 

- 

 

- 

 

- 

 

12 

 

- 

 

12 

 

10.7 

 

17.3 

 

- 

[54] 7 7 - 7 7 6 7 9 14 ≤ 1 

Donepezil 
[57] 

 

9 - 18 

 

4 - 8 

 

- 

 

10 - 16 

 

5 - 9 

 

- 

 

- 

 

4 - 16 

 

7 - 24 

 

- 

[55] 9.2 - - 5.3 - 10.7 - - 8 2.7 

Aducanumab 

[58] 

 

85.7 – 

91.6 

 

- 

 

- 

 

6.7 – 8.9 

 

- 

 

14.3  -  20.5 

 

- 

 

- 

 

- 

 

0 – 0.8 

[60] 54  -  - 13  - 21 10  -  - 0 

[59] 89.6 - - 10.4 - 20 12.8 - 8 0 
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Table 4. Characteristics of FDA-approved drugs for AD (https://www.alzforum.org/) 

Name Synonyms Chemical structure FDA Status Target Type Therapy Type 
Approved 

For 
Side Effects 

Aduhelm 

Aducanumab 

Not Available 
AD 

(Approved) 
Amyloid-Related 

Immunotherapy 

(passive) 
  - 

BIIB037 
 

Donepezil 

Aricept™ 

 

AD 

(Approved), 

Dementia 

with Lewy 

Bodies 

(Inactive), 

Down's 

Syndrome 

(Inactive), 

Parkinson's 

Disease 

Dementia 

(Inactive) 

Cholinergic 

System 
Small Molecule 

AD, 

Dementia 

with Lewy 

Bodies 

(Japan) 

Nausea, loss of  

appetite, diarrhea,  

insomnia, headaches,  

dizziness, orthostasis  

and nightmares 

Donepezil 

hydrochloride 

Eranz® 

E 2020 
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Galantamine 

Razadyne™ 

 

AD 

(Approved) 

Cholinergic 

System 
Small Molecule 

Mild to 

Moderate 

AD 

Nausea, loss of  

appetite, diarrhea,  

insomnia, headaches,  

dizziness, orthostasis  

and nightmares 

Reminyl™ 

Nivalin® 

Leqembi 

Lecanemab-

irmb 

Not Available 
AD 

(Approved) 
Amyloid-Related 

Immunotherapy 

(passive) 
  - BAN2401 

mAb158 

Memantine 

Ebixa™ 

 

AD 

(Approved) 

Other 

Neurotransmitters 
Small Molecule AD 

Constipation, 

dizziness, and  

headache 

Namenda™  

Axura® 

Akatinol® 

Memary® 
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Rivastigmine 

Exelon™ 

 

AD 

(Approved), 

Parkinson's 

Disease 

Dementia 

(Approved) 

Cholinergic 

System 
Small Molecule 

Mild to 

moderate 

AD and 

mild to 

moderate 

dementia 

related to 

Parkinson's 

disease 

Nausea, loss of 

appetite, diarrhea, 

insomnia, headaches, 

dizziness, orthostasis 

and nightmares 

Rivastigmine 

tartrate  

Rivastach® 

Patch 

Prometax® 

SDZ ENA 

713 

MK-4305 

Tacrine Cognex™ 

  

AD 

(Approved 

1993) 

 

Withdrawn 

(2013)  

Cholinergic 

System 

Small Molecule   

Nausea, Vomiting, Loss 

of appetite, Diarrhoea, 

Clumsiness and also, 

Liver toxicity  
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The IC50 values of various acetylcholinesterase (AChE) inhibitors were analyzed and 

represented using a violin plot and a bar plot to illustrate their distribution and comparative 

inhibitory potency (Figure 3). The pIC50 value, the negative logarithm of the IC50, indicates 

that higher values correspond to greater potency. The violin plot shows the density of data 

points for each inhibitor: Donepezil showed moderate potency with some variability centered 

around a pIC50 of 5; galantamine had a broader range between 5 and 7, indicating higher 

potency variability; memantine had a narrow distribution around 5.5, showing consistent 

moderate potency; the new compound stood out with a concentrated distribution around 6.5, 

suggesting higher and more consistent potency; rivastigmine had consistent values around 5 

with less variability; and tacrine had a narrow distribution around 5 with some outliers, 

indicating consistent potency. The bar graph provides detailed distributions: Donepezil-related 

compounds, such as quercetin and kaempferol, ranged from 50 to 100 in pIC50, indicating 

moderate potency; galantamine showed significant variability with values from 50 to nearly 

200; memantine ranged from 60 to 80, indicating consistent moderate potency; the new 

compound showed high potency with some values reaching up to 200; rivastigmine ranged 

from 80 to 100, indicating consistent and relatively high potency; and tacrine ranged from 50 

to 100, indicating moderate potency with less variability. Both plots indicate that the new 

compound has the highest inhibitory potency, while rivastigmine and memantine are shown to 

be reliable inhibitors with consistent values. 
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Figure 3. Violin plot and bar graph of the pIC50 values of several acetylcholinesterase 

(AChE) inhibitors, including donepezil, galantamine, memantine, a new compound, 

rivastigmine, and tacrine. 
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5. Challenge in AD drug discovery 

The landscape of drug development, from initial clinical trials to eventual regulatory approval, 

reveals a pervasive challenge across multiple therapeutic areas worldwide. Drug discovery and 

development is a lengthy and expensive process, taking 10-15 years and costing $1-2 billion 

per drug. Despite rigorous preclinical work, around 90% of drug candidates fail in clinical 

trials, with even higher failure rates when considering preclinical stages[62]. As a result, 

approved drugs carry high prices, a necessary measure to offset the significant financial risks 

associated with numerous trial failures. The multifaceted etiology of AD and the escalating 

financial burden on healthcare systems underscore the urgent need to advance AD prevention 

and treatment modalities. At the time of the most recent assessment in June 2024, there were 

1,513 ongoing clinical trials for AD reported on ClinicalTrials.gov (Figure 4), with a significant 

focus on drug therapies and a few on antibody therapies, but over 99% of small molecules have 

failed in AD trials[63]. Clinical trials for the treatment of AD are listed in the Supplementary 

Table 1. 

 

 

 

3.0

9.8

24.8

4.0

30.3

3.4

16.5

8.2

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

EARLY_PHASE1 NA PHASE1 PHASE1|PHASE2

PHASE2 PHASE2|PHASE3 PHASE3 PHASE4



22 
 

 

 

Figure 4. Distribution of AD clinical trials by phase and trial status. This figure illustrates the 

distribution of clinical trials across different phases of drug development, from preclinical to 

more advanced phases such as Phase 1, 2, 3, and 4. It also shows whether they are ongoing, 

completed, terminated or discontinued for various reasons. 

 

 

Despite significant progress with monoclonal antibody-based interventions, the vast majority 

of small-molecule interventions (more than 99%) have failed in AD clinical trials[63], [64]. 

Therefore, it is of paramount importance to delve into the intricate genetic underpinnings of 

AD in order to identify novel therapeutic targets, as genetic predispositions contribute 

substantially, ranging from 58% to 79%, to the neuropathology of AD[63]. To date, genome-

wide association studies (GWAS) have uncovered approximately 80 loci of significant genetic 

relevance to AD. Nevertheless, bridging the gap between human genetic discoveries and the 

realization of novel drug entities remains a daunting task, largely due to the preponderance of 

AD-associated loci located in non-coding genomic regions, the functional nuances of which 

remain largely unexplored[65], [66].   
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6. Overview of Genetic Research on AD 

One major aim of medical research is to uncover the genetic and environmental factors 

responsible for diseases, including AD[67]. Advancements in microarray technology have 

enabled Genome-Wide Association Studies (GWAS) to link thousands of single nucleotide 

polymorphisms (SNPs) with disease risk. Large-scale projects like the International AD Project 

(IGAP) have conducted extensive GWAS on late-onset AD, involving thousands of patients. 

Two recent GWAS have significantly increased the sample sizes and identified more disease 

susceptibility loci. One study expanded the sample size to over 1.1 million, including new 

biobank and population-based dementia datasets. Another built on an earlier IGAP study, 

bringing the total sample size to 788,989. In total, the two GWAS studies uncovered 90 

different variants at 75 loci associated with AD/dementia susceptibility, 42 of which were 

newly identified[68]. 

To date, AD/dementia GWAS have identified 101 independent AD-associated SNPs at 81 loci 

with genome-wide significance. The first gene associated with late-onset AD was APOE3, 

which is known to have isoforms that influence AD risk, with the APOE4 allele significantly 

increasing risk. Genetic linkage analysis, an early strategy, has mapped genes responsible for 

early-onset familial AD (EOAD) to chromosomes 21, 14, and 1. The analyses have revealed 

that individuals with Down syndrome, who have an extra chromosome 21, exhibit EOAD-like 

pathology. Genetic variations, combined with environmental factors, can alter gene expression 

in brain cells, leading to AD. The discovery of mutations in the APP, PSEN1, and PSEN2 genes 

led to the amyloid cascade hypothesis and had a major impact on AD research. Although rare, 

mutations in these genes have large effects. In addition, GWAS have identified associations 

between AD risk and rare variants in genes such as TREM2, SORL1, and ABCA7. Recent 

studies have also found AD risk signals in novel genes such as ABCA1 and ATP8B4, and 

suggestive associations with variants in RIN3, CLU, ZCWPW1, and ACE. Variants in APOE3, 

such as V236E and R136S, have shown potential to reduce AD pathology and delay disease 

onset in individuals with PSEN1 mutations[67], [68], [69], [70], [71].  

Genetic variations, combined with environmental factors, can alter gene expression in brain 

cells, leading to AD. High-throughput microarray and RNA-sequencing (RNA-Seq) 

technologies allow detailed examination of these changes, helping to identify potential 

therapeutic targets. However, the complexity of data necessitates the use of ML for effective 

analysis. Next-generation sequencing (NGS) enables comprehensive and accurate sequencing 
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of the human genome. Whole-exome sequencing (WES) and whole-genome sequencing 

(WGS) provide extensive DNA data, helping to identify rare variants associated with AD risk. 

NGS has uncovered new mutant genes and susceptibility loci missed by GWAS, such as 

NOTCH3 and SORL1[67], [71], [72]. 

 

7. AI application in AD 

AI and ML technologies are applied at three pivotal stages of early drug discovery: target 

identification, lead generation and optimization, and preclinical development. In the realm of 

target discovery, AI techniques amalgamate diverse datasets to discern patterns, thereby 

elucidating the molecular mechanisms of diseases and drug actions. For lead generation and 

optimization, ML algorithms enhance scoring functions and quantitative structure–activity 

relationship (QSAR) models within virtual screening frameworks, facilitating the automation 

and refinement of de novo drug design. During preclinical development, ML approaches create 

predictive models for physicochemical properties by processing substantial volumes of 

chemical data, further refining absorption, distribution, metabolism, and excretion-toxicity 

(ADME-T) profiles[63], [73], [74]. 

 

7.1. AI in AD diagnosis 

AD can be diagnosed based on clinical symptoms; however, there is currently no universally 

accepted clinical standard for diagnosing AD in living individuals. A definitive diagnosis is 

made postmortem by identifying neurofibrillary tangles (NFT) or diffuse amyloid deposition, 

which are closely associated with the disease. Research indicates that the onset of the 

neuropathological hallmarks of AD, such as NFTs and abnormal amyloid plaques, begins years 

before the onset of clinical symptoms. Therefore, the identification of biomarkers and the use 

of imaging techniques to detect early signs in high-risk individuals is critical. In this context, 

beta-amyloid and tau levels in cerebrospinal fluid (CSF) and changes in brain volume are 

detectable through imaging. Neuroimaging is critical in identifying early diagnostic indicators 

of AD, facilitating early diagnosis and intervention. The most common imaging modalities 

used to diagnose neurodegenerative diseases include magnetic resonance imaging (MRI), 

computed tomography (CT), and positron emission tomography (PET). However, rapid 

advances in neuroimaging technology have created challenges in managing and interpreting 
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large amounts of brain imaging data. To address these challenges, computer-based algorithms, 

particularly those based on AI, are increasingly being used for integrative analysis[75], [76]. 

One study developed an ML algorithm to classify AD by examining abnormal hippocampal 

functional connectivity. The study included 119 participants aged 60-85 years who underwent 

functional MRI scans and were classified into AD, mild cognitive impairment (MCI), or normal 

control (NC) groups. The support vector regression (SVR) model used achieved accuracies of 

82%, 81%, and 81 % in distinguishing AD from NC, MCI from NC, and AD from MCI, 

respectively[77]. In addition, deep learning techniques, particularly convolutional neural 

networks (CNNs), have been shown to be highly effective in detecting Alzheimer's disease 

(AD); in one study, CNN-based models achieved outstanding performance, with test and 

validation accuracies of 96% and 99%, respectively, in identifying AD from MRI scans[75], 

[78]. In another study, researchers introduced a densely connected convolutional neural 

network (CAM-CNN) with a connection-wise attenuation mechanism to improve the accuracy 

of AD diagnosis using MRI brain scans. This approach achieved accuracies of 97% for 

identifying mild AD patients, 88% for MCI converters, and 79% for stable MCI subjects 

compared to healthy controls[79]. In other studies, a multimodal deep neural network was 

created using structural MRI and FDG-PET images for early diagnosis of AD. This method 

showed an accuracy of 94% in classifying individuals with probable AD, an accuracy of 86% 

in identifying MCI individuals likely to convert to AD within 1 to 3 years, and an accuracy of 

86 % in classifying non-demented controls[80]. Also, Yu et al. proposed the Multidirectional 

Perception-Generative Adversarial Networks (MP-GAN), which uses MRI images to identify 

key features indicative of AD. This model stands out for its ability to highlight subtle lesions 

through image transformations, proving effective in experiments using the AD Neuroimaging 

Initiative (ADNI) dataset[81]. El-Sappagh et al. proposed a two-layer explainable ML using 

data from 11 modalities, including genetics and neuropsychological scores. Their model 

achieved high accuracy in multi-class classification and showed potential for early MCI to AD 

prediction[82]. 

 

7.2. AI in Drug Discovery 

The advent of artificial intelligence (AI) methodologies presents a transformative potential for 

the drug discovery and development process, spanning from foundational research to pre-

clinical and clinical phases. Compared to traditional biological experiments, AI-based models 
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have shown greater speed and efficacy by utilizing extensive biomedical datasets[73], [83], 

[84]. These AI methodologies encompass models based on ML, deep learning, and network 

algorithms. ML, a branch of AI, is a set of data analysis techniques designed to create predictive 

models by learning from data. These models improve their predictive accuracy over time 

through experience. Deep learning (DL), a subset of ML, employs methods capable of 

understanding the relationships between inputs and outputs by modeling complex, non-linear 

interactions into more abstract, higher-level representations[85], [86].  

ML encompasses the creation and application of algorithms that determine actions based on 

data analysis and its properties, rather than being explicitly programmed for specific outputs. 

These algorithms are typically adaptive, enhancing their performance as they are exposed to 

more data. ML algorithms are generally categorized into four types: supervised learning, 

unsupervised learning, semi-supervised learning, and reinforcement learning. Each type 

employs different algorithms to accomplish tasks such as classification or clustering. However, 

successful AI implementation involves more than just training a model. A comprehensive AI 

workflow includes several steps: problem formulation, data preparation, feature extraction, 

selection of training and testing datasets, model development, model training and performance 

testing (cross-validation), and application and refinement of the model on testing datasets.[73], 

[87], [88] 

 

7.3. AI in AD omics data analysis  

In the field of data analysis, traditional statistical modeling has long been the method of choice 

for interpreting large data sets. In recent years, however, AI has become increasingly prominent 

in various disciplines. This shift is largely due to the transformation of data from traditional 

structured formats to more complex forms such as unstructured, semi-structured, and 

heterogeneous data with varying characteristics. In addition, the need for deeper and more 

accurate insights into biological mechanisms has raised the bar for omics analysis[89], [90]. 

To develop precision medicine and personalized treatments for AD, it is crucial to integrate 

various multiomic datasets such as the genome, transcriptome (including single-cell 

transcriptomics), proteome, metabolome, phenome, radiome, and human interactome (protein-

protein interactions). Leveraging these datasets, researchers can create advanced AI and in 

silico models, encompassing ML and network medicine approaches, as well as cell-type-

specific models for microglia, astrocytes, and neurons. These models have the potential to 
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enhance patient stratification, pinpoint targets for drug discovery or repurposing, and tailor 

treatments for AD and other complex brain disorders. So, high-throughput experimental data 

databases are essential for developing AI-driven solutions that can effectively identify drug 

targets, elucidate disease pathobiology, and understand the mechanisms of drug actions[91].  

 

7.4. AI in AD treatment 

Computer-aided drug design (CADD) has become an essential part of the drug discovery and 

development landscape. Its introduction has dramatically sped up the process, cutting down the 

time needed for experimental work. With the rise of computer-based strategies, key concepts 

such as structure-based drug design (SBDD) like molecular docking and dynamics, ligand-

based drug design (LBDD) including quantitative structure-activity relationships (QSAR) and 

pharmacophore modeling, and virtual screening (VS) have become integral to the field (Figure 

5).  The combination of CADD and ML has opened up numerous possibilities in drug discovery. 

These approaches have been particularly effective in reducing costs, saving time, filtering out 

ineffective molecules early on, and decreasing the likelihood of failure in the final stages of 

drug development[92], [93], [94], [95]. 
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Figure 5. Computer-based drug design strategies, including structure-based drug design 

(SBDD), ligand-based drug design (LBDD), De Novo Drug Design, virtual screening (VS), 

and ADMET Prediction. 

 

7.4.1 AI in de novo drug design 

De novo drug design (DNDD) is about designing new chemical entities (NCEs) from scratch, 

using computational algorithms. The term "de novo" means "from the beginning," highlighting 
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that this approach generates new molecular entities without any pre-existing templates. The 

inputs for this process come from various ligand representations, including SMILES 

(Simplified Molecular Input Line Entry Systems), molecular graphs, molecular fingerprints, 

and 3D structures. The benefits of DNDD are substantial: it allows for exploring a vast 

chemical space, creating compounds that can become novel intellectual property, developing 

potentially groundbreaking therapies, and doing all this in a cost- and time-efficient manner. 

Recently, the scope of chemical search space has significantly expanded thanks to AI 

generative models. These include techniques like recurrent neural networks, encoder-decoder 

models, reinforcement learning, generative adversarial networks, flow-based models, and 

hybrid models. These advancements in AI-based de novo drug design are making drug 

development faster and more efficient, though there are still some challenges to overcome[63], 

[96]. 

 

7.4.1.1 Structure-based de novo drug design 

When it comes to structure-based de novo drug design, everything starts with identifying the 

receptor's active site. This area of the receptor is crucial since its shape, physical, and chemical 

properties dictate how well a ligand can bind to it. By analyzing the active site, scientists 

determine the shape constraints and the types of non-covalent interactions, such as hydrogen 

bonds, electrostatic forces, and hydrophobic interactions, that a ligand can form. These 

interactions help create specific sites where ligands can bind, which is essential for reducing 

the vast number of potential molecular structures and improving selectivity. Various methods 

are used to define these interaction sites. For example, HSITE is a rule-based method that 

focuses on hydrogen-bond donors and acceptors to map out hydrogen-bonding regions. Other 

methods like LUDI and PRO_LIGAND also consider hydrophobic interaction sites, while 

HIPPO includes covalent and metal ion bond interaction sites. Some approaches use grids, 

generating a series of points within the active site and calculating interaction energies for each 

point. The multiple-copy simultaneous search (MCSS) method docks functional groups 

randomly within the active site to find the most energetically favorable positions, discarding 

those that don't meet a certain energy threshold[97], [98]. 

AlphaFold 2 (AF2) has revolutionized structure-based drug discovery by providing accurate 

protein structure predictions, especially for proteins without known structures. Researchers 

have found that AF2 can enhance virtual screening and free energy calculations, though its 
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binding sites often resemble apo structures more than holo structures. Efforts to refine AF2 

models have shown promise in improving their utility. Studies have demonstrated that AF2 

structures can perform better than homology models in some cases, and they can predict 

binding free energies with similar accuracy to crystal structures. Additionally, tools like the 

ProBiS-Fold web server have used AF2 to identify thousands of new, highly druggable binding 

sites, highlighting AF2's potential to unlock numerous new targets for drug discovery[99], 

[100]. 

 

7.4.1.2. Ligand-based de novo drug design 

Early methods of ligand-based de novo drug design, like LeapFrog and SPROUT, marked 

significant advancements in generating new molecules. LeapFrog combined a genetic 

algorithm with a 3D molecular field scoring model (3D-CoMFA), starting from known ligands 

to create novel compounds. SPROUT, on the other hand, utilized atomic constraints derived 

from existing drugs or ligands, with or without 3D receptor coordinates. These early techniques 

focused on simple rules to ensure chemical validity, primarily considering atom valences and 

bond orders but often neglecting chemical feasibility and drug-likeness. SPROUT was among 

the first to address synthetic feasibility with a specific algorithm called Computer Assisted 

Estimation of Synthetic Accessibility[101]. 

However, ligand-based de novo design has its limitations, mainly due to the dependency on 

existing target-specific ligand datasets and the lack of pharmacological property predictions. 

To overcome these challenges, recent innovations have emerged. One such approach is the 

RELATION model, an encoder-decoder-based generative model that extracts 3D binding 

pocket features from protein-ligand complexes to generate effective molecules, showing high 

efficacy in AKT1 and CDK2 targets. Similarly, the Sakurai group introduced DeepTarget, an 

AI model that uses protein amino acid sequences to guide molecule generation, achieving 

impressive results with DRD2 and PARP1 datasets. Designing molecules with high drug 

potential involves tackling challenges like drug-likeness and logP metrics. To address this, 

researchers proposed an iterative refinement framework using a graph-based molecular quality 

assessment model (QADD). This model incorporates a molecular quality assessment module 

into a graph neural networks (GNN) model to score drug potentials and employs a multi-

objective deep reinforcement learning algorithm to optimize multiple molecular properties. The 
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generated molecules demonstrated superior validity, success rates, and novelty compared to the 

RNN-based REINVENT model[63], [102], [103]. 

 

7.4.2. AI virtual screening in AD 

High-Throughput Screening (HTS) and Virtual Screening (VS) are two essential techniques in 

drug discovery. HTS involves the rapid testing of large numbers of compounds for biological 

or biochemical activity. This process uses automated equipment and miniaturized assays to 

process thousands of samples simultaneously, making it a go-to method in the early stages of 

drug discovery. However, HTS can be time-consuming and resource-intensive, with a low 

number of successful hits. To enhance the efficiency of HTS, researchers often use VS, a 

computational technique that identifies potential drug candidates by predicting their 

interactions with drug targets, such as protein receptors or enzymes, without physical 

experimentation; however, VS is not a replacement for HTS[104]. 

The first step in VS is the creation of a compound database for the screening process. This often 

involves pulling large amounts of data from public chemogenomics libraries such as ChEMBL, 

PubChem, or ZINC, each of which contains tens of millions of compounds with detailed 

annotations about their structure and known targets. Then the VS begins, either as Structure-

Based Virtual Screening (SBVS) or Ligand-Based Virtual Screening (LBVS), or sometimes a 

mixture of the two. SBVS examines the structures of the ligand and the target binding site to 

predict how likely the ligand is to bind. This often involves docking, where compounds are 

"placed" in the target binding site and scored for their binding probability based on predefined 

metrics. LBVS, on the other hand, doesn't need structural information and instead relies on the 

molecular and chemical properties of known and tested compounds[105]. 

ML has become a useful tool in virtual screening, significantly increasing the yield of potential 

drugs by sifting through millions of compounds in silico. Key ML algorithms used in this 

context include Bayesian methods, support vector machines (SVM), supervised learning, 

dimensionality reduction, artificial neural networks (ANN), and ensemble algorithms. 

Bayesian learning algorithms, for example, can represent input data as feature vectors and plot 

them in a space of the same dimensionality. These algorithms have been particularly effective 

in studying the biological activities of small molecules and prioritizing them for experimental 

screening for diseases such as AD and Parkinson's (PD). A Bayesian ML virtual screen even 

identified several glycogen synthase kinase-3β (GSK3β) inhibitors from a large library of 
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FDA-approved drugs and clinical candidates. Google DeepMind's AlphaFold has 

revolutionized the field by predicting 3D protein structures from amino acid sequences, 

streamlining the determination of target protein structures that are critical to drug design[105], 

[106]. 

In addition, AI-based scoring capabilities have been developed to improve the accuracy of 

molecular docking. For example, Lu et al. introduced ΔvinaXGB, an AI-based scoring function 

that incorporates parameters such as water and ligand stability along with protein-ligand 

interaction terms. This model demonstrated robust performance on the CASF-2016 benchmark, 

outperforming traditional docking strategies such as AutoDock Vina[63]. 

 

7.4.3 AI Pharmacokinetic/Pharmacodynamic Evaluation in AD 

In recent decades, understanding the properties associated with absorption, distribution, 

metabolism, excretion, and toxicity (ADMET) has become a key focus in drug discovery and 

development. Pharmacokinetics is the study of how drug concentrations change over time in a 

biological system. This field encompasses the processes of absorption, distribution, 

metabolism, and excretion, collectively known as ADME. A drug must exhibit favorable 

pharmacokinetic behavior in order to move beyond the discovery phase and into further stages 

of development. The pharmacokinetics of a drug are influenced by several factors, including 

its physicochemical properties, intrinsic clearance, volume of distribution, and interactions 

with body tissues and fluids. After a drug is absorbed into the bloodstream, it reaches peak 

concentration, is distributed throughout the body, is metabolized primarily by the liver, and is 

ultimately excreted primarily by the kidneys. Transporter proteins, including solute transporters 

and ATP-binding cassette transporters, play a critical role in these processes. Key 

pharmacokinetic parameters include half-life (t½), apparent volume of distribution (Vd), 

elimination rate constant (Ke), maximum plasma concentration (Cmax), time to maximum 

plasma concentration (Tmax), area under the concentration-time curve (AUC), and clearance 

(Cl). These parameters may vary depending on the method of drug administration[107], [108], 

[109] 

The high failure rate of clinical trials in AD has put pressure on the pharmaceutical industry to 

improve the ADMET properties of drug candidates, especially for brain penetration. Since in 

vivo and in vitro evaluations are expensive and time-consuming, AI-based models have become 

essential for estimating these properties. For example, a substructure pattern recognition model 
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using support vector machines (SVM) was developed to predict BBB penetration, achieving 

an impressive 98.4% accuracy on test sets. Another AI approach, a light gradient boosting 

machine (LightGBM) model, was trained on thousands of BBB-permeable and non-permeable 

molecules and achieved 89% accuracy during cross-validation and 90% accuracy on an 

external validation set of CNS compounds. These advances in AI have led to several new 

models for predicting BBB penetration and other ADMET properties, demonstrating their 

potential in early drug discovery[110]. 

Overall, researchers have made significant strides in drug development by using AI tools, 

especially in tackling AD and related dementias (ADRD). So far, there are 158 drug candidates 

driven by AI that are currently in the discovery or preclinical stages for various diseases[83]. 

 

8. Public AD-related databases  

Using AI for AD and other neurological research requires vast datasets, consisting of numerous 

entries with a wide range of clinical and biological variables. These datasets help develop 

innovative algorithms by analyzing the disease's features. Over the past two decades, there has 

been significant growth in open data-sharing initiatives in neurodegenerative disease research, 

particularly for AD[85]. 

Several key resources have emerged to support this data-sharing: 

• The AD Genetics Consortium (ADGC) (http://www.adgenetics.org/) 

• The AD Sequencing Project (ADSP) (https://adsp.niagads.org/) 

• ADNI (https://adni.loni.usc.edu/) 

• AlzGene (http://www.alzgene.org/) 

• Dementias Platform UK (DPUK) (https://portal.dementiasplatform.uk/) 

• Genetics of AD Data Storage Site (NIAGADS) (http://www.niagads.org/) 

• Global Alzheimer’s Association Interactive Network (GAAIN) 

(https://www.gaain.org/) 

• National Centralized Repository for AD and Related Dementias (NCRAD) 

(https://ncrad.iu.edu/) 

These public databases collect a wide range of data, including biological specimens, clinical 

and cognitive test results, lifestyle information, neuroimages, genetic data, and CSF and blood 

biomarkers from individuals who are normal, cognitively impaired, or demented. This wealth 
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of data is essential for applying advanced ML algorithms. Moreover, the National Alzheimer’s 

Coordinating Center (NACC) (https://naccdata.org/) has developed a comprehensive relational 

database for AD research, using standardized clinical and neuropathological data. 

DementiaBank (https://dementia.talkbank.org/), a part of TalkBank, provides language data 

related to dementia, including audio files and text transcriptions from verbal tasks like the Pitt 

corpus[85], [111]. 

High-throughput experimental data from specialized databases are crucial for creating AI-

based solutions to identify new drug targets, enhance understanding of disease biology, and 

uncover drug action mechanisms for AD treatment. For example, high-throughput DNA/RNA 

sequencing projects like the ADSP and ADNI have generated extensive genomic data. Key 

databases such as NIAGADS have accumulated vast genetic and genomic datasets, while 

initiatives like the Accelerating Medicines Partnership® Program for AD (AMP® AD) focus 

on identifying therapeutic targets and biomarkers. Databases like DrugBank and DrugCentral 

provide comprehensive drug-target information, supporting AI-driven drug discovery efforts. 

The AlzGPS platform integrates multi-omics and clinical data, helping researchers evaluate 

thousands of drugs and develop treatment strategies for AD. The ADNI is one of the most 

frequently cited datasets, offering a comprehensive longitudinal dataset with genomics, images, 

clinical data, and biospecimens. The Religious Orders Study/Memory and Aging Project 

(ROSMAP) is another valuable multi-omic longitudinal dataset that includes genomics, 

transcriptomics, methylomics, proteomics, and metabolomics. The Gene Expression Omnibus 

is also a notable source for gene expression profiling[112], [113], [114], [115], [116].  

 

9. Target identification for AD by AI 

ML algorithms are increasingly crucial for analyzing large genetic datasets, aiding in AD 

diagnosis, prognosis, and the study of gene interactions. By integrating various omics datasets 

(genome, transcriptome, proteome, metabolome, and more), AI approaches can develop 

precision medicine and personalized treatments for AD.  By examining changes in gene 

expression within brain cells, researchers can identify key genes and pathways involved in AD, 

which could serve as targets for new treatments. High-throughput techniques like microarrays 

and RNA sequencing (RNA-Seq) provide a detailed view of the cell or tissue transcriptome, 

but the data's complexity requires advanced analysis methods.   In 2011, Kong and colleagues 

developed two unsupervised ML algorithms, ICA and NMF, to analyze gene expression in the 
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hippocampus of both AD patients and control subjects. They found that many genes related to 

metal metabolism and inflammation were significantly altered in AD patients. Scheubert used 

a combination of genetic algorithms and support vector machines (GA/SVM) to efficiently 

identify genes linked to AD, discovering new candidate biomarkers such as LOC642711 and 

LY6H. Panigrahi and team took an integrative systems biology approach to uncover genes and 

biological processes related to AD and aging, using supervised learning software and self-

organizing maps to analyze microarray data from the hippocampus, frontal lobe, and blood 

mononuclear cells of AD patients. They identified ten major classes of transcription factors and 

unique miRNA targets as key regulatory processes in AD. Other researchers, like Nishiwaki 

and Miao, have used methods like the random forest algorithm and two-stage classifiers to find 

additional AD-related genes. Li et al. explored gene expression changes in both blood and brain 

tissues, discovering that over 77% of genes exhibited consistent regulation across different 

tissues and disease states. They used SVM, random forest, and logistic ridge regression (RR) 

models to highlight pathways like mitochondrial dysfunction and NF-kappa B signaling as 

crucial in AD pathogenesis. Armananzas proposed a method to integrate gene expression data 

and sequence predictions with ML, identifying previously unreported microRNAs linked to 

AD, such as miR-106a and miR-504. ML has significantly advanced the early stages of drug 

discovery for AD by identifying and characterizing targets. For example, the Cordax method 

predicts amyloid core sequences using structural data, helping understand amyloid fibrils and 

identify potential drug targets. The HENA dataset combines various data types to predict AD-

associated genes using a graph convolutional network (GCN). Network-based Bayesian 

approaches and projects like AI4AD use AI to analyze genetic, imaging, and clinical data, 

identifying new targets and biomarkers for AD[67], [117], [118], [119], [120]. 

 

10. Comparative Advantages of AI in Drug Design for AD Over Computational 

Approaches 

Recent developments in AI have transformed the field of drug discovery for complex diseases 

such as AD. Traditional drug design methods have often been slow, expensive, and with limited 

clinical success. AI offers a more efficient alternative by processing large datasets from 

genomics, proteomics, and electronic health records to identify potential drug targets, 

repurpose existing drugs, and predict therapeutic outcomes with higher accuracy.[121] 
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10.1. AI-Driven Drug Development 

The collaboration between Exscientia and Sumitomo Dainippon Pharma has resulted in one of 

the first AI-based drug discovery outcomes: DSP-0038, the first AI-designed molecule to enter 

Phase 1 clinical trials for the treatment of Alzheimer's disease psychosis. This molecule is 

designed to act as a dual 5-HT1A receptor agonist and 5-HT2A receptor antagonist. Such dual-

target approaches are often difficult to achieve in conventional drug discovery due to challenges 

with selectivity and off-target effects. The trial will assess DSP-0038’s potential in mitigating 

behavioral and psychological symptoms of dementia (BPSD), such as agitation, aggression, 

anxiety, and depression, which are common but difficult-to-treat symptoms in AD.[122] 

 

10.2. Predicting Blood-Brain Barrier Permeability 

Crossing the blood-brain barrier (BBB) is a critical challenge in the development of drugs for 

neurodegenerative diseases such as Alzheimer's disease. AI models such as MegaMolBART 

have been developed to predict BBB permeability using molecular structures encoded as 

SMILES representations. Pre-training the model on the ZINC-15 dataset significantly 

improved its predictive performance. Unlike traditional physicochemical methods, these AI-

based approaches offer greater flexibility and computational efficiency, enabling faster and 

more accurate identification of brain-penetrating drug candidates.[123] 

 

10.3. AI in Drug Repurposing 

AI is also proving effective in repurposing existing drugs for Alzheimer's disease. A recent 

study using ChatGPT identified several drugs, including metformin, simvastatin and losartan, 

as candidates associated with a reduced risk of Alzheimer's disease. Repurposing approved 

drugs for other indications accelerates the therapeutic development process, reducing the time 

and cost of bringing treatments to patients.[124] 

 

10.4. Network-based approaches and multi-omics data integration 

AI-powered network analysis has uncovered new therapeutic pathways in Alzheimer's disease 

by identifying Alzheimer's risk genes (ARGs) from multi-omics datasets. In one study, AI 

models integrated gene expression and regulatory data with Bayesian frameworks, revealing 
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enriched druggable targets in AD pathways. Drugs such as pioglitazone and carvedilol emerged 

as promising candidates. Pioglitazone, traditionally used for type 2 diabetes, was shown to 

reduce amyloid-β levels, while carvedilol, a beta-blocker for hypertension, improved cognitive 

function in animal models of AD by reducing beta-amyloid accumulation.[117] 

 

10.5. Toward a Paradigm Shift in AD Treatment 

AI-driven drug discovery has led to significant advances by optimizing candidate selection, 

predicting BBB permeability, and facilitating drug repurposing. In contrast to traditional 

methods that have struggled to develop highly effective AD therapies, AI has the potential to 

improve the efficiency and precision of drug development. Given that computationally 

designed drugs have had limited success in fully restoring cognitive function in AD patients, 

AI-designed drugs such as DSP-0038 could bring us closer to effective treatments for this 

challenging disease. 

 

11. Limitations of AI in AD Diagnosis and Treatment 

ML has revolutionized AD diagnosis and treatment. However, predicting the best targets for 

new treatments remains complex due to the lack of well-defined "ideal" targets. The data used 

for training ML models may not be sufficient to provide precise answers, and this challenge is 

compounded by the inherent limitations of the technology[125]. 

ML has shown great potential in clinical drug therapy, helping physicians and pharmacists 

make informed decisions about drug regimens, adverse reactions, and treatment outcomes. 

Research in this field relies heavily on hospital electronic medical records, genomics databases, 

and drug interaction databases. Despite advancements, challenges remain, such as the lack of 

standardized patient information entry, effective data quality control, and issues with data silos 

in databases. The quality and quantity of training data are crucial, but variations in AD patient 

examinations and data formats, along with inaccuracies like omissions and misdiagnoses, pose 

significant obstacles. Furthermore, a substantial volume of case data is necessary for training, 

but there are no standardized criteria for determining the required quantity and quality of 

data[125], [126], [127], [128]. 
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While ML excels at data processing, it presents technical challenges. Many models function as 

black boxes, making it difficult for users to understand their internal workings and address 

errors. The diversity of ML methods complicates the selection of the most appropriate approach 

for specific clinical issues, requiring interdisciplinary communication and collaboration. The 

field's cross-disciplinary nature demands expertise in computer science, linear algebra, 

probability theory, and mathematical statistics, creating a barrier to widespread adoption. 

Developing user-friendly modeling tools for healthcare professionals could help mitigate this 

issue[129]. 

 

12. Ethical and Legal Issues 

Ethical and legal considerations are crucial in the application of ML to AD. The use of 

substantial clinical and imaging data raises privacy and security concerns, necessitating 

informed consent for data collection, transmission, and storage. Data anonymization is 

essential, and patients should have the right to anonymize their data, especially for profit-driven 

uses. ML models are not infallible and can lead to misdiagnosis or treatment errors, requiring 

clear guidelines for legal responsibility. As ML tools become integral to clinical decision-

making, ensuring data security and privacy is paramount. The development and application of 

ML in clinical settings must address these explicit ethical challenges[130]. 

 

13. Challenges in the AI-Driven Drug Discovery for AD 

While AI has shown great promise in accelerating drug discovery for AD, several challenges 

remain that need to be addressed to fully realize its potential: 

 

13.1. Lack of Understanding of Disease Mechanisms 

A deeper understanding of the complex pathophysiology of AD is crucial for developing 

effective therapies. AI can help address this gap by analyzing large datasets from electronic 

health records and multi-omics profiles to provide insights that can guide therapeutic 

development[121]. 

13.2. High Failure Rates in Clinical Trials 
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The high failure rate of clinical trials in AD underscores the need for more accurate predictive 

models and better patient selection criteria. AI can optimize clinical trial design by identifying 

the most promising drug candidates, predicting drug-target interactions, and selecting patients 

most likely to benefit from the intervention[131]. 

13.3. Interpretability of AI Models 

As AI becomes more widely adopted in drug discovery, the interpretability of these models 

becomes increasingly important. Researchers are working on developing explainable AI 

techniques that can provide insights into the decision-making process of these models, making 

them more transparent and trustworthy[63]. 

13.4. Collaboration and Data Sharing 

Successful application of AI in drug discovery requires collaboration among researchers from 

various disciplines, including neurology, genetics, and data science. Additionally, open data 

sharing is crucial for training robust AI models. Initiatives like the ADNI have demonstrated 

the value of data sharing in accelerating research[121]. 

 

13.5. Ethical Considerations 

As AI becomes more prevalent in healthcare, it is important to address ethical concerns such 

as data privacy, algorithmic bias, and the potential for job displacement. Establishing clear 

guidelines and regulations will be crucial for ensuring that AI is developed and deployed 

responsibly[131]. 

14. Future Directions in AI-Driven Drug Discovery for AD 

Despite these challenges, the future of AI-driven drug discovery for AD looks promising. As 

AI technologies continue to evolve and more data becomes available, researchers are likely to 

make significant strides in understanding the disease mechanisms and developing effective 

therapies. Some key areas of focus include: 

• Integrating multi-omics data with AI techniques to enhance our understanding of AD 

pathophysiology and facilitate precision medicine strategies[63], [121]. 

• Leveraging AI for drug repurposing to identify new uses for existing drugs, which can 

expedite the drug development process[63], [132]. 
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• Applying AI to optimize clinical trial design and patient selection criteria to improve 

the success rate of clinical trials[131]. 

• Developing explainable AI techniques to make AI models more transparent and 

trustworthy[63]. 

• Fostering collaboration and data sharing among researchers to accelerate the pace of 

discovery[121], [131]. 

 

15. Conclusions  

AI/ML technology holds great potential to advance drug discovery and clinical trials for AD. 

As high-quality databases are created and new algorithms are developed, collaborative efforts 

between clinical and computer researchers will likely expand ML applications in clinical drug 

therapy research. Utilizing sophisticated ML algorithms and tools can significantly improve 

the effectiveness of clinical prediction models in practice, enhancing diagnostic and treatment 

efficiency and enabling intelligent, personalized therapeutic decision-making.  
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