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Abstract 
Osteoarthritis (OA) is a progressive joint disease characterized by cartilage degradation, bone 
remodeling, and inflammation, leading to pain and loss of mobility. Accurate prediction and early 
diagnosis of OA remain critical for effective intervention. Recent advancements in deep learning, 
particularly Deep Convolutional Neural Networks (DCNNs), have revolutionized the field of medical 
imaging by enabling precise pattern recognition in complex data such as MRI and X-ray scans. 
Additionally, transcriptome analysis provides valuable molecular insights into gene expression changes 
associated with OA progression. In this study, we attempted to predict OA by enriching DCNN-based 
models with transcriptome data to improve prediction accuracy and diagnosis. We hypothesized that by 
leveraging both DL techniques and gene expression molecular information, we could offer a 
comprehensive solution for identifying OA at its early stages and guiding personalized treatment 
strategies. Our results demonstrate that it is possible to accurately predict OA using gene expression data 
and deep neural networks, even with a limited sample size. 
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1. Introduction 
Osteoarthritis (OA) is a prevalent chronic joint disease affecting over 300 million people 
worldwide, particularly in aging populations. Characterized by the gradual degradation of 
cartilage, bone remodeling, and inflammation, OA causes pain, stiffness, and mobility loss, 
greatly impacting patients' quality of life and creating a heavy healthcare burden [1]. Traditional 
OA diagnosis typically relies on symptom assessment and radiographic imaging; however, 
these methods often capture OA only in its later stages, which restricts the effectiveness of early 
interventions [2]. Early detection is vital to improve outcomes, yet current diagnostic tools lack 
the precision to identify subtle joint changes in OA's early stages. 

 
Recent advancements in deep learning (DL), particularly in Deep Convolutional Neural 
Networks (DCNNs), have transformed medical imaging by enabling accurate identification of 
complex patterns in MRI and X-ray images [3]. Through their layered architecture, DCNNs can 
detect minute OA indicators that are difficult for human experts to discern, offering a more 
sensitive diagnostic tool [4]. Studies show DCNNs effectively recognize OA-related structural 
changes in joints, making them powerful tools for disease progression analysis [5, 6]. 

 
In addition to imaging advancements, transcriptomic analysis provides insights into the 
molecular changes underlying OA. By profiling gene expression, transcriptomics highlights 
disruptions linked to OA progression, including genes associated with inflammation and 
cartilage breakdown [7, 8]. When combined with imaging data, transcriptomics supports a 
comprehensive diagnostic approach, integrating anatomical and molecular information to 
enhance prediction accuracy. 

 
This study proposes an innovative model combining DCNN-based imaging analysis with 
transcriptomic data to improve early OA detection and prediction accuracy. By integrating 
molecular data into DL models, we aim to bridge the gap between imaging and biological 
insights, supporting earlier detection and potentially informing personalized treatment 
strategies. We hypothesize that this combined approach will create a robust model that can 
better predict OA onset and progression, ultimately contributing to individualized patient care. 

 
2. Methods 

 
1.2 Metadata Curation and Processing 



 

 
We utilized four gene expression datasets GSE117999, GSE51588, GSE57218, and 
GSE114007 downloaded from the Gene Expression Omnibus (GEO) database for our analysis. 
The GSE117999 dataset includes 24 samples, comprising 12 cartilage tissue samples from 
normal joints and 12 from osteoarthritis (OA) joints (Figure 1). GSE51588 contains 50 samples, 
with 10 subchondral bone tissue samples from normal joints and 40 from OA joints. The 
GSE57218 dataset consists of 73 samples, including 7 cartilage tissue samples from normal 
joints and 66 from OA joints. Finally, GSE114007 comprises 38 samples, with 18 cartilage 
tissue samples from normal joints and 20 from OA joints. These datasets provided a robust 
foundation for our subsequent differential gene expression analysis, allowing us to explore the 
molecular differences associated with OA. 

 

Figure 1. A 2D medical illustration of an osteoarthritic knee joint showing characteristic 
damage associated with osteoarthritis. The image highlights cartilage degradation, cracks in the 
cartilage layer, and rough joint surfaces. 

2.2 Differential Expression Analysis 

To identify differentially expressed genes, we performed an RNA-seq data analysis using the 
edgeR package. The analysis began with the normalization of raw count data, followed by 
fitting a negative binomial generalized linear model to each gene to account for biological 
variability. We applied the likelihood ratio test (LRT) to determine the significance of 
differential expression between experimental conditions. The resulting statistics included log 
fold change (logFC), log counts per million (logCPM), likelihood ratio (LR), p-values, and false 
discovery rate (FDR) adjusted p-values [9]. 

For visualization, we created an MA plot using the ggplot2 package, where the log2 fold change 
was plotted against the average expression level (logCPM). Genes with significant differential 



 

 
expression (adjusted p-value < 0.05) were highlighted: upregulated genes (logFC > 1) in green, 
downregulated genes (logFC < -1) in red, and non-significant genes (logFC between -1 and 1) 
in grey. To further focus on the most significant genes, we extracted those with both an adjusted 
p-value below 0.05 and an absolute logFC greater than 1. These genes were identified as the 
most relevant for downstream analyses, and their details, including gene names, logCPM, 
logFC, p-value, and FDR, were exported into a text file for further investigation and reporting 
[10]. 

3.2 Data modeling and DL models 

We employed CNN neural network models to estimate predictive accuracy based on gene 
expression data from multiple studies (GSE51588, GSE117999, GSE57218, GSE114007) 
sourced from the GEO database. After preprocessing and aligning common genes across 
datasets, we split the data into training (GSE51588, GSE117999, GSE57218) and test 
(GSE114007) sets [11]. For analysis, we designed two neural network architectures: a CNN 
with 1D convolutional and max-pooling layers and an RNN with simple RNN and dense layers. 
Both models were trained for 20 epochs, using categorical crossentropy as the loss function. 
We evaluated model performance using AUC scores on the test set to measure their ability to 
distinguish between control and case conditions. This analysis demonstrated the predictive 
capabilities of CNNs and RNNs in recognizing gene expression patterns related to osteoarthritis. 

3. Results and discussion 
 

Figure 2 MA plot provides a visual representation of the differential expression of genes 
between osteoarthritis (OA) samples and control samples. Each point on the plot represents a 
gene, positioned based on two key metrics logCPM and log2FC. 
A total of 1260 genes were identified as significantly associated with OA, either upregulated or 
downregulated. These genes provide insights into molecular pathways and biological processes 
potentially involved in OA development or progression, making them candidates for further 
study and validation. Shown in red, these genes are expressed at significantly higher levels in 
OA samples compared to controls, indicating potential roles in OA pathology. Shown in green, 
these genes have significantly lower expression in OA samples, suggesting they may be 
suppressed or less active in OA conditions. Represented in grey, these genes show minimal or 
no significant differential expression between OA and control samples, indicating a limited 
association with OA in this context. 
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Figure 2. MA Plot of Differential Gene Expression in OA vs. Control Samples, highlighting 
1260 significantly upregulated (red) and downregulated (green) genes. 

Our findings revealed that the simplest model outperformed the more complex architectures, 
achieving the highest AUC of 0.825. This model, which consisted of only two convolutional 
layers with 32 and 16 filters, demonstrated a better balance between model complexity and 
predictive performance. The fully complicated model, despite its depth and additional layers, 
yielded a slightly lower AUC of 0.814, while the medium complicated model performed the 
worst with an AUC of 0.612 (Figure 3). One of the most striking observations was the consistent 
difficulty across all models in accurately detecting true positive cases, as indicated by the low 
sensitivity scores. Despite achieving high specificity, which indicates the models capability to 
correctly identify non-cases, the low sensitivity suggests that the models struggled with true 
case identification. This trend may indicate potential overfitting in the more complex models, 
where the high number of layers and filters may have led to an excessive focus on the training 
data's nuances, reducing generalizability. 
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Figure 3. ROC Curve showing model performance for OA prediction: simplest model (AUC 
= 0.825, blue) outperformed complex (AUC = 0.814, red) and medium (AUC = 0.612, green) 
models. 

These findings underscore the importance of model selection in the context of biomedical data, 
where simpler models may sometimes offer better performance, particularly in datasets with 
limited sample sizes or high-dimensional feature spaces. Our results align with previous studies 
suggesting that increasing model complexity does not always translate to improved 
performance and may, in some cases, lead to diminished returns due to overfitting. However, 
this study has some limitations. First, the dataset size, while focused on a specific set of genes 
related to osteoarthritis, may not capture the full spectrum of genetic variability associated with 
the disease. Additionally, the binary classification framework may have oversimplified the 
underlying biological complexity of osteoarthritis, which could benefit from a more nuanced 
multi-class or regression approach in future studies. 

Future research could explore the use of transfer learning, where pre-trained models on larger 
datasets could be fine-tuned on osteoarthritis-specific data, potentially improving sensitivity. 
Additionally, integrating multi-omics data and clinical variables could enhance model accuracy 
and provide a more comprehensive understanding of the disease's genetic underpinnings. In 
conclusion, our study highlights the importance of balancing model complexity with 
performance metrics, particularly in the context of deep learning applications in genomics. 
While deep learning holds significant promise for advancing our understanding of complex 
diseases like osteoarthritis, careful consideration must be given to model architecture, especially 
when dealing with high-dimensional but small datasets. 
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